
ARM Instruction Set
Quick Reference Card

Key to Tables
{cond} Refer to Table Condition Field {cond} <a_mode2> Refer to Table Addressing Mode 2
<Oprnd2> Refer to Table Operand 2 <a_mode2P> Refer to Table Addressing Mode 2 (Post-indexed only)
<fields> Refer to Table PSR fields <a_mode3> Refer to Table Addressing Mode 3
{S} Updates condition flags if S present <a_mode4L> Refer to Table Addressing Mode 4 (Block load or Stack pop)
C*, V* Flag is unpredictable after these instructions in Architecture v4 and earlier <a_mode4S> Refer to Table Addressing Mode 4 (Block store or Stack push)
Q Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR <a_mode5> Refer to Table Addressing Mode 5
x,y B meaning half-register [15:0], or T meaning [31:16] <reglist> A comma-separated list of registers, enclosed in braces ({ and })
<immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits {!} Updates base register after data transfer if ! present
<immed_8*4> A 10-bit constant, formed by left-shifting an 8-bit value by two bits § Refer to Table ARM architecture versions

Operation § Assembler S updates Q Action Notes
Move Move MOV{cond}{S} Rd, <Oprnd2> N Z C Rd := Oprnd2

NOT MVN{cond}{S} Rd, <Oprnd2> N Z C Rd := 0xFFFFFFFF EOR Oprnd2
SPSR to register 3 MRS{cond} Rd, SPSR Rd := SPSR
CPSR to register 3 MRS{cond} Rd, CPSR Rd := CPSR
register to SPSR 3 MSR{cond} SPSR_<fields>, Rm SPSR := Rm (selected bytes only)
register to CPSR 3 MSR{cond} CPSR_<fields>, Rm CPSR := Rm (selected bytes only)
immediate to SPSR 3 MSR{cond} SPSR_<fields>, #<immed_8r> SPSR := immed_8r (selected bytes only)
immediate to CPSR 3 MSR{cond} CPSR_<fields>, #<immed_8r> CPSR := immed_8r (selected bytes only)

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn + Oprnd2
with carry ADC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn + Oprnd2 + Carry
saturating 5E QADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + Rn) No shift/rotate.
double saturating 5E QDADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + SAT(Rn * 2)) No shift/rotate.

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn - Oprnd2
with carry SBC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Rn - Oprnd2 - NOT(Carry)
reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Oprnd2 - Rn
reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2> N Z C V Rd := Oprnd2 - Rn - NOT(Carry)
saturating 5E QSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm - Rn) No shift/rotate.
double saturating 5E QDSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm - SAT(Rn * 2)) No shift/rotate.

Multiply 2 MUL{cond}{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0]
accumulate 2 MLA{cond}{S} Rd, Rm, Rs, Rn N Z C* Rd := ((Rm * Rs) + Rn)[31:0]
unsigned long M UMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs)
unsigned accumulate long M UMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)
signed long M SMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs)
signed accumulate long M SMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs)
signed 16 * 16 bit 5E SMULxy{cond} Rd, Rm, Rs Rd := Rm[x] * Rs[y] No shift/rotate.
signed 32 * 16 bit 5E SMULWy{cond} Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16] No shift/rotate.
signed accumulate 16 * 16 5E SMLAxy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + Rm[x] * Rs[y] No shift/rotate.
signed accumulate 32 * 16 5E SMLAWy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + (Rm * Rs[y])[47:16] No shift/rotate.
signed accumulate long 16 * 16 5E SMLALxy{cond} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y] No shift/rotate.

Count leading zeroes 5 CLZ{cond} Rd, Rm Rd := number of leading zeroes in Rm
Logical Test TST{cond} Rn, <Oprnd2> N Z C Update CPSR flags on Rn AND Oprnd2

Test equivalence TEQ{cond} Rn, <Oprnd2> N Z C Update CPSR flags on Rn EOR Oprnd2
AND AND{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn AND Oprnd2
EOR EOR{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn EOR Oprnd2
ORR ORR{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn OR Oprnd2
Bit Clear BIC{cond}{S} Rd, Rn, <Oprnd2> N Z C Rd := Rn AND NOT Oprnd2
No operation NOP R0 := R0 Flags not affected.
Shift/Rotate See Table Operand 2.

Compare Compare CMP{cond} Rn, <Oprnd2> N Z C V Update CPSR flags on Rn - Oprnd2
negative CMN{cond} Rn, <Oprnd2> N Z C V Update CPSR flags on Rn + Oprnd2

ARM Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Branch Branch B{cond} label R15 := label label must be within ±32Mb of

current instruction.
with link BL{cond} label R14 := R15-4, R15 := label label must be within ±32Mb of

current instruction.
and exchange 4TBX{cond} Rm R15 := Rm, Change to Thumb if Rm[0] is 1
with link and exchange (1) 5TBLX label R14 := R15 - 4, R15 := label, Change to Thumb Cannot be conditional.

label must be within ±32Mb of
current instruction.

with link and exchange (2) 5TBLX{cond} Rm R14 := R15 - 4, R15 := Rm[31:1]
Change to Thumb if Rm[0] is 1

Load Word LDR{cond} Rd, <a_mode2> Rd := [address]
User mode privilege LDR{cond}T Rd, <a_mode2P>
branch (and exchange) LDR{cond} R15, <a_mode2> R15 := [address][31:1]

(§ 5T: Change to Thumb if [address][0] is 1)
Byte LDR{cond}B Rd, <a_mode2> Rd := ZeroExtend[byte from address]

User mode privilege LDR{cond}BT Rd, <a_mode2P>
signed 4 LDR{cond}SB Rd, <a_mode3> Rd := SignExtend[byte from address]

Halfword 4 LDR{cond}H Rd, <a_mode3> Rd := ZeroExtent[halfword from address]
signed 4 LDR{cond}SH Rd, <a_mode3> Rd := SignExtend[halfword from address]

Load multiple Pop, or Block data load LDM{cond}<a_mode4L> Rd{!}, <reglist-pc> Load list of registers from [Rd]
return (and exchange) LDM{cond}<a_mode4L> Rd{!}, <reglist+pc> Load registers, R15 := [address][31:1]

(§ 5T: Change to Thumb if [address][0] is 1)
and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^ Load registers, branch (§ 5T: and exchange),

CPSR := SPSR
Use from exception modes only.

User mode registers LDM{cond}<a_mode4L> Rd, <reglist-pc>^ Load list of User mode registers from [Rd] Use from privileged modes only.
Store Word STR{cond} Rd, <a_mode2> [address] := Rd

User mode privilege STR{cond}T Rd, <a_mode2P> [address] := Rd
Byte STR{cond}B Rd, <a_mode2> [address][7:0] := Rd[7:0]

User mode privilege STR{cond}BT Rd, <a_mode2P> [address][7:0] := Rd[7:0]
Halfword 4 STR{cond}H Rd, <a_mode3> [address][15:0] := Rd[15:0]

Store multiple Push, or Block data store STM{cond}<a_mode4S> Rd{!}, <reglist> Store list of registers to [Rd]
User mode registers STM{cond}<a_mode4S> Rd{!}, <reglist>^ Store list of User mode registers to [Rd] Use from privileged modes only.

Swap Word 3 SWP{cond} Rd, Rm, [Rn] temp := [Rn], [Rn] := Rm, Rd := temp
Byte 3 SWP{cond}B Rd, Rm, [Rn] temp := ZeroExtend([Rn][7:0]),

[Rn][7:0] := Rm[7:0], Rd := temp
Coprocessors Data operations 2CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2> Coprocessor defined

5 CDP2 p<cpnum>, <op1>, CRd, CRn, CRm, <op2> Cannot be conditional.
Move to ARM reg from coproc 2MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

5 MRC2 p<cpnum>, <op1>, Rd, CRn, CRm, <op2> Cannot be conditional.
Move to coproc from ARM reg 2MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

5 MCR2 p<cpnum>, <op1>, Rd, CRn, CRm, <op2> Cannot be conditional.
Load 2 LDC{cond} p<cpnum>, CRd, <a_mode5>

5 LDC2 p<cpnum>, CRd, <a_mode5> Cannot be conditional.
Store 2 STC{cond} p<cpnum>, CRd, <a_mode5>

5 STC2 p<cpnum>, CRd, <a_mode5> Cannot be conditional.
Software
interrupt

SWI{cond} <immed_24> Software interrupt processor exception 24-bit value encoded in instruction.

Breakpoint 5 BKPT <immed_16> Prefetch abort or enter debug state Cannot be conditional.

ARM Addressing Modes
Quick Reference Card

Addressing Mode 2 - Word and Unsigned Byte Data Transfer ARM architecture versions
Pre-indexed Immediate offset [Rn, #+/-<immed_12>]{!} n ARM architecture version n and above.

Zero offset [Rn] Equivalent to [Rn,#0] nT T variants of ARM architecture version n and above.
Register offset [Rn, +/-Rm]{!} M ARM architecture version 3M, and 4 and above excluding xM variants
Scaled register offset [Rn, +/-Rm, LSL #<immed_5>]{!} Allowed shifts 0-31 nE E variants of ARM architecture version n and above.

[Rn, +/-Rm, LSR #<immed_5>]{!} Allowed shifts 1-32
[Rn, +/-Rm, ASR #<immed_5>]{!} Allowed shifts 1-32
[Rn, +/-Rm, ROR #<immed_5>]{!} Allowed shifts 1-31 Operand 2
[Rn, +/-Rm, RRX]{!} Immediate value #<immed_8r>

Post-indexed Immediate offset [Rn], #+/-<immed_12> Logical shift left immediate Rm, LSL #<immed_5> Allowed shifts 0-31
Register offset [Rn], +/-Rm Logical shift right immediate Rm, LSR #<immed_5> Allowed shifts 1-32
Scaled register offset [Rn], +/-Rm, LSL #<immed_5> Allowed shifts 0-31 Arithmetic shift right immediate Rm, ASR #<immed_5> Allowed shifts 1-32

[Rn], +/-Rm, LSR #<immed_5> Allowed shifts 1-32 Rotate right immediate Rm, ROR #<immed_5> Allowed shifts 1-31
[Rn], +/-Rm, ASR #<immed_5> Allowed shifts 1-32 Register Rm
[Rn], +/-Rm, ROR #<immed_5> Allowed shifts 1-31 Rotate right extended Rm, RRX
[Rn], +/-Rm, RRX Logical shift left register Rm, LSL Rs

Logical shift right register Rm, LSR Rs
Addressing Mode 2 (Post-indexed only) Arithmetic shift right register Rm, ASR Rs
Post-indexed Immediate offset [Rn], #+/-<immed_12> Rotate right register Rm, ROR Rs

Zero offset [Rn] Equivalent to [Rn],#0
Register offset [Rn], +/-Rm
Scaled register offset [Rn], +/-Rm, LSL #<immed_5> Allowed shifts 0-31 PSR fields (use at least one suffix)

[Rn], +/-Rm, LSR #<immed_5> Allowed shifts 1-32 Suffix Meaning
[Rn], +/-Rm, ASR #<immed_5> Allowed shifts 1-32 c Control field mask byte PSR[7:0]
[Rn], +/-Rm, ROR #<immed_5> Allowed shifts 1-31 f Flags field mask byte PSR[31:24]
[Rn], +/-Rm, RRX s Status field mask byte PSR[23:16]

x Extension field mask byte PSR[15:8]
Addressing Mode 3 - Halfword and Signed Byte Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8>]{!}

Zero offset [Rn] Equivalent to [Rn,#0] Condition Field {cond}
Register [Rn, +/-Rm]{!} Mnemonic Description Description (VFP)

Post-indexed Immediate offset [Rn], #+/-<immed_8> EQ Equal Equal
Register [Rn], +/-Rm NE Not equal Not equal, or unordered

CS / HS Carry Set / Unsigned higher or same Greater than or equal, or unordered
Addressing Mode 4 - Multiple Data Transfer CC / LO Carry Clear / Unsigned lower Less than

Block load Stack pop MI Negative Less than
IA Increment After FD Full Descending PL Positive or zero Greater than or equal, or unordered
IB Increment Before ED Empty Descending VS Overflow Unordered (at least one NaN operand)
DA Decrement After FA Full Ascending VC No overflow Not unordered
DB Decrement Before EA Empty Ascending HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal
Block store Stack push GE Signed greater than or equal Greater than or equal
IA Increment After EA Empty Ascending LT Signed less than Less than, or unordered
IB Increment Before FA Full Ascending GT Signed greater than Greater than
DA Decrement After ED Empty Descending LE Signed less than or equal Less than or equal, or unordered
DB Decrement Before FD Full Descending AL Always (normally omitted) Always (normally omitted)

Addressing Mode 5 - Coprocessor Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8*4>]{!} Key to tables

Zero offset [Rn] Equivalent to [Rn,#0] {!} Updates base register after data transfer if ! present. (Post-indexed always updates.)
Post-indexed Immediate offset [Rn], #+/-<immed_8*4> <immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.
Unindexed No offset [Rn], {8-bit copro. option} +/- + or -. (+ may be omitted.)

